Stereocontrolled Functionalization of Acyclic Molybdenum- η^3 -Allyl Complexes: a New Approach to the Stereoselective Synthesis of 1,3-Diols

Wen-Jung Uong,^a Shie-Hsiung Lin,^a Rai-Shung Liu*^a, Gene-Hsian Lee,^b and Shie-Ming Peng^b

^a Department of Chemistry, National Tsing Hua University, Hsinchu 30043, Taiwan, ROC
^b Department of Chemistry, National Taiwan University, Taipei 30002, Taiwan, ROC

Functionalization of $[CpMo(CO)_2(\eta^3-syn-1-C_3H_4COCH_3)]$ proceeds in a highly stereospecific manner; the Mo- η^3 -allyl unit is effective in directing asymmetric carbon induction in the course of *s*-trans- η^4 -cis-pentadiene formation, aldol condensation and asymmetric 1,3-diol synthesis.

The control of stereochemistry during C–C bond formation is a central issue in modern synthetic chemistry. The use of a transition-metal moiety as a stereodirecting template has proven effective in the construction of subunits of natural products particularly in cyclic systems.^{1,2} With an aim to achieve a highly stereocontrolled synthesis of complex acyclic molecules,^{3,4} we have studied the stereochemistry of the functionalization of a ketone group adjacent to an asymmetric Mo- η^3 -allyl fragment. We now report on the reaction of [CpMo(CO)₂(syn- η^3 -1-C₃H₄COCH₃)] which allows stereoselective synthesis of 1,3-diol and related 1,3-difunctional homoallylic alcohol. The acyclic 1,3-diol is a basic skeleton in natural product synthesis such as polyoxo ionophores, macrolides, and ansamycins and its asymmetric induction has been a subject of considerable interest.⁵

Treatment of (1) with DIBAL-H (2 equiv.) in CH₂Cl₂ at -78 °C afforded (2) in *ca*. 52% yield. The related alcohol (4) was obtained as a single isomer from reduction of (3) with NaBH₄ in CH₃OH at 23 °C. The *RR(SS)* configuration is assignable assuming that hydride adds to the carbonyl *trans* to

the CpMo(CO)₂ fragment.[†] Treatment of (2) and (4) with one equiv. of $(CF_3SO_2)_2O$ in ether at -40 °C immediately produced an air-stable orange precipitate of the *s*-trans- η^4 diene cations⁶ (5) and (6) of which the elemental analyses were satisfactory. Compound (5) has been characterized by a low-temperature NMR spectrum ([²H₆] acetone, -60 °C)

[†] Molecular structure of (3) has been determined by an X-ray diffraction study. The crystals belong to the triclinic system, space group, PI, a = 7.0395(1) Å, b = 7.891(3) Å, c = 11.716(8) Å, $\alpha = 98.67(4)^{\circ}$, $\beta = 92.50(4)^{\circ}$, $\gamma = 112.93(3)^{\circ}$, V = 588.8(5) Å, Z = 2. Diffraction data were collected on an Enraf-Nonius CAD4 diffractometer using Mo- K_{α} radiation. A total of 2259 reflections were collected. Of the 2076 unique reflections, 2006 were considered observed having I > 2o(I). The position of the Mo atom was taken from a Patterson Map. The remainder of the non-hydrogen atoms were located in differences Fourier maps. Final R = 0.024 and $R_w = 0.029$. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

Scheme 1. M=CpMO(CO)₂ i, X=OCH₃, DIBAL-H, CH₂Cl₂ (-78 °C), X=CH₃, NaBH₄/CH₃OH; ii, (CF₃SO₂)₂O, ether (-78 °C); iii, ROH = H₂O, CH₃OH, C₂H₃CH₂OH, ether (-46 °C); iv, (Me₂CH)₂NH, ether (-40 °C).

which shows six inequivalent butadiene proton resonances within δ 4.00-5.00 ppm and four butadiene carbon resonances at δ 66.1, 67.1, 84.9, and 96.2 ppm. Attempts to obtain NMR spectra of (6) encountered difficulties because of its facile conversion to the more stable s-cis-n⁴-pentadiene.⁷[‡] The solid form of (6) showed remarkable reactivity in ether at -40°C toward H₂O, CH₃OH and allyl alcohol and respectively yielded (2), (7), and (8) in ca. 52-68% yields. Treatment of (6) with $(Me_2CH)_2NH$ gave (9) in 51% yield. Compounds (7) and (8) retained the same configuration as that of (4) as hydrolysis of (6) regenerated (4). The formation of (4), (7-9) requires that (6) adopts a s-trans-n⁴-cis-pentadiene configuration (Scheme 1). The stereospecific yield of (6) from (4) implies an intramolecular S_N2 substitution⁸ during the ionization process. In this manner, $CpMo(CO)_2$ acts as a base to displace CF₃SO₃⁻ in an opposite direction, and the resulting s-trans-diene is subsequently stabilized by the $CpMo(CO)_2$ fragment.

The availability of (2) and (7–8) can be utilized⁴ for asymmetric synthesis of acyclic 1,3-diol and related analogues which contain three chiral carbons (Scheme 2). In a typical experiment, the dicarbonyl complexes were treated with NOBF₄ in CH₃CN. Further addition of LiCl to the NO-salt in acetone gave the chlorides (10–12) as air-stable complexes. Interestingly only one single diastereoisomer was observed for these chlorides in the ¹H NMR limit even though the molecules contain three chiral centres. Stirring of (10) with 2.5 equiv. of benzaldehyde in CH₂Cl₂ in the presence of CH₃OH, for a period of 2 days, stereospecifically produced the acetal

Scheme 2

(13) in 52% yield. The configuration of (13) was determined by ¹H NMR spectra and a NOE experiment.§ Hydrolysis of the acetal by p-CH₃C₆H₄SO₃H gave 1,3-diol (14) in 60% yield. Similarly, stirring of (11) and (12) with benzaldehyde and CH₃OH in CH₂Cl₂, for a period of 2 days gave (15) and (16) as one single diastereoisomer in *ca*. 51—52% yield.

Of particular interest, the asymmetric $[CpMo(CO)_2(\eta^3-1 C_{3}H_{4}R$] unit of (3) exhibits a pronounced effect in asymmetric carbon induction in aldol condensation. Treatment of (1) with LDA in THF at -78 °C generated the enolate which reacted with benzaldehyde to give a pair of diastereoisomers (17) in 87 : 13 ratio. The major isomer can be obtained in pure form after fractional recrystallization from ether. An X-ray diffraction study revealed that the molecule adopts the RR(SS)-configuration. Reduction of (17) with NaBH₄ in CH₃OH gave 1,3-diol (18) as a single diastereoisomer (18) (81%). Following Scheme 2, this 1,3-diol (18) was converted to its chloride derivative (19) to give a single diastereoisomer (51% yield). Similarly stirring of (19) with benzaldehyde and CH_3OH stereoselectively produced the acetal (20) in 56% yield. Hydrolysis of the acetal by p-CH₃C₆H₄SO₃H gave 1,3,5-triol(21) (53% yield).

§ In an NOE experiment, irradiation of the H⁴ proton results in 6.2 and 3.2% increase in intensities of the H¹ and H² protons respectively. Moreover, the magnitudes of J_{23} 2.3 Hz and J_{34} 2.1 Hz are consistent with axial-equatorial coupling pattern.

[‡] The ¹H NMR spectra of (6) freshly dissolved in [²H₆] acetone at -60 °C exhibited an ill-defined broad spectrum which nevertheless at -40 °C showed a well-resolved spectrum assignable to the *s*-*cis*- η^4 -pentadiene containing both *anti*- and *syn*-methyl isomers. The two isomers are chemically exchangeable in a mechanism in which both *exco-endo* isomerization and butadiene-flipping processes are operative ⁷

[¶] Molecular structure of the major isomer of (17) has been determined by an X-ray diffraction study. The crystals belong to the monoclinic system, space group $P2/_1C$, a = 14.901(7) Å, b = 8.611(4)Å, c = 13.830(6) Å, $\beta = 104.57(3)$ °. Diffraction data were collected on a Nicolet R3m/V diffractometer using Mo- K_{α} radiation. A total of 2972 reflections were collected. Of the 2623 unique reflections, 1215 were considered observed having $I>3\sigma(I)$. The position of the Mo atom was taken from a Patterson Map. The remainder of the non-hydrogen atoms were located in differences Fourier maps. Final R = 0.035, $R_w = 0.032$. Supplementary crystallographic data have been deposited as for structure (3).†

Scheme 3

In summary, we have shown that functionalization of (3) proceeds in a highly stereospecific manner. The Mo- η^3 -allyl unit is effective in directing asymmetric carbon induction, particularly in the course of *s*-trans- η^4 -cis pentadiene formation, aldol condensation and asymmetric 1,3-diol synthesis.

For extension of this chemistry, we are attempting to separate the racemic forms of (3) to achieve enantioselective synthesis of 1,3-diol.

We thank the National Science Council, R.O.C. for financial support of this work.

Received, 30th April 1990; Com. 0/01910K

References

- (a) A. J. Pearson, M. D. Khan, J. C. Clardy, and C.-H. He, J. Am. Chem. Soc., 1985, 107, 2748; (b) A. J. Pearson, S. L. Blystone, H. Nav, A. A. Pinketon, B. A. Rodev, and J. Yoon, *ibid.*, 1989, 111, 134; (c) A. J. Pearson, and M. N. Kahn, *ibid.*, 1984, 106, 1872.
- 2 A. J. Pearson, Acc. Chem. Res., 1980, 13, 463; (b) A. J. Pearson, Pure Appl. Chem., 1983, 55, 1767.
- 3 Use of organometallic complexes in directing asymmetric carbon induction of acyclic molecules see: (a) L. S. Liebeskind, M. Z. Welker, and V. Goedken, J. Am. Chem. Soc., 1984, 106, 441; (b) K. Broadly and S. G. Davies, Tetrahedron Lett., 1984, 25, 1743; (c) L. S. Liebeskind, R. W. Fengl, M. E. Wolper, and V. Goedken, *ibid.*, 1985, 26, 3075 and 3079.
- 4 (a) J. W. Faller, J. A. John, and M. R. Mazzieri, *Tetrahedron Lett.*, 1989, **30**, 1769; (b) J. W. Faller, and D. L. Linebarrier, *J. Am. Chem. Soc.*, 1989, **111**, 1937.
- 5 (a) S. Yue, J. S. Duncan, Y. Yamamoto and C. R. Hutchinson, J. Am. Chem. Soc., 1987, 109, 1253; (b) B. H. Lipshutz and J. A. Kozlowski, J. Org. Chem., 1984, 49, 1149; (c) D. M. Floyd and A. W. Fritz, Tetrahedron Lett., 1981, 22, 2847; (d) T. Nakata, N. Hata, K. Iida, and T. Oishi, Tetrahedron Lett., 1987, 28, 5661; (e) K. Tamao, T. Nakajima, R. Sumiya, H. Arai, N. Higachi, and Y. Ito, J. Am. Chem. Soc., 1986, 108, 6090.
- 6 (a) G. Erker, J. Wicher, K. Engel, F. Rosenfeldt, W. Dietrich, and C. Kruger, J. Am. Chem. Soc., 1980, 102, 6344; (b) A. Nakamura, and H. Yasuda, Angew. Chem., Int. Ed. Engl., 1987, 26, 723; (c) S. A. Benyunes, M. Green, and M. Grimshire, J. Organometallics, 1989, 8, 2268.
- 7 J. W. Faller and A. M. Rosan, J. Am. Chem. Soc., 1977, 99, 4858.
- 8 (a) W. F. Little, K. W. Lynam, and R. Williams J. Am. Chem. Soc., 1964, 86, 3005; (b) A. L. J. Beckwith and R. J. Laydon, J. Am. Chem. Soc., 1964, 86, 953.